THE COMPLEXING ABILITY OF N-SUBSTITUTED/thiourea DERIVATIVES AS CHELATING LIGANDS IN THE REACTION WITH PdCl₂

Yu.L.Zborovskii1, V.V.Orysyk1, D.O.Melnichenko1, S.I.Orysyk2, H.H.Repich2, L.V.Garmanchuk3, L.I.Palchykovska4, V.I.Pekhnyo2, M.V.Vovk1

1Institute of Organic Chemistry NAS of Ukraine, 5, Murmanska Str., Kyiv, 02660, Ukraine. E-mail: zborovsky@ioch.kiev.ua
2V.I.Vernadskii Institute of General and Inorganic Chemistry NAS of Ukraine
3Educational and Scientific Centre “Institute of Biology” of Taras Shevchenko National University of Kyiv
4Institute of Molecular Biology and Genetics NAS of Ukraine

Key words: C=C double bond; palladium coordination compounds; thioureas; single crystal X-ray diffraction study; π-complexes; antitumor activity

The complexation reactions of N-substituted thiourea derivatives with PdCl₂ have been investigated in the present work. The functionally substituted thiourea derivatives are found to be effective chelating agents, in which the nature of substituents has a significant impact to the compositions and structures of complexes. Thus, (N-pyridine-2-yl)thioureas in the interaction with PdCl₂ form two types of complexes in the molar ratio of M:L 1:1 and 1:2, in which they act as S,N-bidentate ligands coordinated to the palladium ion by thione sulphur and the nitrogen atom of the pyridine ring. The reaction of N-allylthioureas with PdCl₂ in the equimolar ratio results in formation of the π-complexes where the ligands are coordinated by the thione sulphur and the C=C double bond of the allylic moiety. The preparative methods for the synthesis of this type of complexes have been developed. The composition of the products synthesized and the ligands coordination mode have been determined by elemental analysis and ¹H NMR spectroscopy. Furthermore, the structure of compounds 4, 5 has been confirmed by the X-ray diffraction study. The biomedical studies have proven that the complex compounds 5 and 6 in vitro have the cytostatic and cytotoxic activity against tumour HeLa cells.

The study; π-complexes; antitumor activity

УДК 547.496.3:546.98:57.085.2

Исследованы реакции комплексообразования N-замещенных производных тиомочевины с PdCl₂ при эквимолярном соотношении реагентов приводит к образованию π-комплексов, в которых координация осуществляется с участием атома серы тионной группы и C=C подвйной связи аллильного фрагмента. Разработаны препаративные методы синтеза этого типа комплексных соединений. Состав синтезированных веществ и способ координации лигандов установлены элементным анализом и методом ¹H ЯМР спектроскопии. Окрім того, будова комплексів 4, 5 доведена рентгеноструктурним методом. Медико-біологічними дослідженнями встановлено, що комплексні сполуки 5 і 6 in vitro проявляють цитостатичну та цитотоксичну дію на пухлинні клітини лінії HeLa.

Комплексообразующая способность N-замещенных производных тиомочевины как хелатирующие лиганды в реакции с Pd(II)
Thiourea and its N-substituted derivatives are efficient complexing agents for metal ions, which are widely used as ligands in coordination chemistry [1-3]. The presence of unshared electron pairs in the sulphur atom and two nitrogen atoms allows to form the complex compounds with transition metal salts of the different type, many of which possess valuable applied properties (optical, semiconductor, biological, etc.) and are employed in various fields of science and technology [4-7]. Thioureas are of prime importance as anticancer drugs due to their ability to inhibit the enzymes that are involved in the malignant tumour formation processes (tyrosine kinase, protein tyrosine kinase and NADH oxidase) [8-10].

In recent 15-20 years much attention has been given to the study of the biological activity of complex compounds of transition and platinum metals [11-15]. Many of them exhibit a high pharmacological activity, and as therapeutic agents are often superior to starting metal salts because the complex formation prevents hydrolysis in the physiologic medium, reduces toxicity and facilitates penetration of medicines through the cell membrane. Moreover, the use of biologically active ligands, an additive or synergistic effect manifests itself between the constituents of complexes [16, 17]. Therefore, development of methods for the synthesis of different types of complexes based on thiourea derivatives is a promising trend in creating novel therapeutic and diagnostic agents [3, 18-21].

The introduction of additional functional groups into the structure of thioureas (such as allyl, pyridine, morpholine) allows to expand the range of their biological activity and to increase the denticity of these ligand systems, it leads to their competitive coordination to metal ions. On the other hand, palladium as a “soft Lewis acid” has also the competing ability in the interaction with ambidentate ligands by the «soft-soft» type thereby resulting in formation of complexes with different structures depending on the synthetic conditions and the geometrical arrangement of donor atoms in the ligands.

In this work, the effect of synthetic conditions and the denticity of N-allyl-N’-(2-pyridinyl)thiourea (HL1), N-allylmorpholine-4-carbothioamide (HL3) and N-allyl-N’-tert-butylthiourea (HL4) as ligands on formation of mononuclear coordination compounds with PdCl2 has been studied. In addition, the cytotoxic and proapoptotic activities of Pd(II) complexes based on HL3,4 (5, 6) were determined.

Results and Discussion

The complexation reactions were carried out in the acidic medium according to the Scheme. Thioureas (HL1, HL2) contain nucleophilic pyridine nitro-
gen and sulphur atoms of the carbothioamide group at the stoichiometrically advantageous positions for formation of metallochelates; it results in their coordination to the central metal ion as \(S,N\)-bidentate ligands thereby forming complexes 1-4. At the same time the acid medium contributes to their stay in thionic tautomeric form. Changing the reaction conditions such as temperature, the heating time and the molar ratio affect the number of coordinated ligand molecules and chlorine anions.

Unlike HL1, HL2, thioureas HL3, HL4 contain only one nucleophilic atom (sulphur) capable to coordination, which makes them potential monodentate reagents. However, the ability of palladium to the "soft-soft" interaction leads to formation of n,π-chelate complexes 5, 6. All attempts to synthesize complexes with the molar ratio of 1:2 under the same conditions were unsuccessful. It may be due to the antisympathetic effect of "soft" allyl and thiourea groups, which makes unfavourable further substitution of "hard" Cl− ions to "soft" donor atoms of another ligand molecule [22].

All the complexes are soluble in DMSO and DMF, whereas complexes 2, 4-6 are also soluble in water and alcohols.

Single crystal X-ray diffraction study of complexes 4, 5. One molecule of complex 4 per unit cell is observed, and the atom Pd1 occupies a special position at the centre of inversion. The palladium atom is bound by two S and two N atoms with bond angles N1a–Pd1–N1 180.0°, S1a–Pd1–S1 180.0°, N1a–Pd1–S1a 85.74(7)° and N1a–Pd1–S1 94.26(7)° in a square-planar coordination geometry (Fig. a). The Pd1–Sl and Pd1–N1 bond lengths are 2.315(8) and 2.029(2) Å, respectively. The bonding parameters agree with the coordinate patterns in [23-25].

The fragment N2C6N3 has a planar configuration (the sum of bond angles is 360°) and C6–N2 and C6–N3 bond lengths are shorter than that for a standard single C–N bond because of conjugation of the lone pair electrons for the nitrogen atoms N2 and N3 with the double C(6)=S(1) bond (1.731(3) Å). The pyride ring is planar: the mean deviation from the least-square plane does not exceed 0.011 Å. The bond angles Pd1–S1–C6 92.98(10)°, S1–C6–N2 120.1(2)°, C6–N2–C1 127.4(3)°, N2–C1–N1 120.2(3)°, C1–N1–Pd1 123.13(18)°, N1–Pd1–S1 85.74(7)° of the six-member chelate ring is similar to the corresponding angles in [24] and illustrate that the metallocycle is significantly distorted and has a bath form. The symmetric cycle Pd1/S1a/C6a/N2a/C1a/N1a is analogous. The asymmetric unit also contains a solvate molecule of acetone, which is bonded to the complex by the N2–HNH...O6 hydrogen bond, with the following parameters: N2...H2N, 0.73(3); HNH...O6, 2.15(3); N2H...O6, 2.864(4) Å; N2–H2N–O6 166(3)°. Two perchlorate anions occupy the free space around the palladium atom, and the shortest Pd1–O2 distance of the perchlorate anion is 3.747 Å.

The asymmetric unit of compound 5 involves one solvation water molecule (Fig. b). The central palladium ion forms a square planar coordination unit Pd(C=C)SCl2 by atom S1, two chloride ions Cl1, Cl2 and double bond C1=C2 of the allyl fragment. The midpoint of the C1=C2 double bond is considered as the point ligand with the distance of 2.0451(3) Å to the central metal ion. The average deviation from the absolute planar configuration is 0.0325 Å. The angle between the polyhedral plane and С1–С2 bond is 179º. The bond length С4−S1 (1.741(4) Å) indicates to the thione tautomeric form of the coordinated thiourea HL3. The bonds Pd–Cl (2.322, 2.329 Å) in complex 5 are equivalent. The analysis of the crystal packing shows a layered structure of complex molecules along the crystallographic axis [010] by the “head-to-tail” type with the extensive system of hydrogen bonds O–H...O 2.897(4) Å, N–H...O 2.759(4) Å and O–H...Cl 3.278(3), 3.350(3) Å.

\(^{1}H\) NMR spectra. In the \(^{1}H\) NMR spectra of complexes 1, 2, the signals for CH=CH2 (allyl) and N\(^{3}H\) (thiourea group) are shifted upfield by \(\delta = 0.104–0.135\) and 1.23 ppm, respectively, compared to those in the spectrum of HL1. The considerable upfield shift...
of the signal for \(\text{N}^2\text{H} \) is due to its participation in forming the six-membered chelate ring \(\text{Pd-N}^1\text{-C}^1\text{-N}^1\text{H-C}^2\text{-S} \) (Scheme). The fairly substantial downfield shifts of the signals for the pyridine protons can also be attributed to the coordination of \(\text{HL}^1 \) by the pyridine N atom. It should be noted that the protons \(\text{C}^1\text{H}_{\text{py}} \) \((\Delta \delta=0.766) \), \(\text{CH}_{\text{py}} \) \((\Delta \delta=0.296) \), \(\text{C}^2\text{H}_{\text{py}} \) \((\Delta \delta=0.266) \) and \(\text{C}^4\text{H}_{\text{py}} \) \((\Delta \delta=0.192 \text{ ppm}) \), which are in ortho and para position to the coordination bond \((\text{N}^1\text{py} \rightarrow \text{Pd}) \) are most sensitive to the complexation. This is in full agreement with the current approach to location of the coordination bond using the heteronuclear NMR method [26].

The \(^1\text{H} \) NMR spectrum of the \(\text{HL}^2 \) shows the signals at 7.05, 7.60, 7.70 and 8.28 ppm, which are assigned to the pyridine ring protons. A broad singlet corresponding to one proton at 9.85 ppm is assigned to the NH group. The morpholine protons give two triplets at 3.64 and 3.89 ppm, which correspond to -\(\text{N}^1\text{CH}_2 \) and -\(\text{O}^2\text{-CH}_2 \) groups, respectively.

In the spectra of complexes 3, 4 all multiplets of the pyridine ring are shifted downfield and observed at 7.42-8.97 ppm, wherein the doublet \(\text{H}^2 \) located near the nitrogen atom undergoes significantly more downfield shift \((\Delta \delta=0.69 \text{ ppm}) \); it indicates the participation of the pyridine ring in the coordination to the metal ion. The \(\text{N}^2\text{H} \) group is included in the six membered metallocycle, and it causes a significant downfield shift of a broad singlet of this proton by 1.56/1.53 ppm and indicates inclusion of the carbamido group in the coordination to the metal. The morpholine proton signals are observed at 3.77/3.95 \((-\text{N}^1\text{-CH}_3) \) and 4.03/4.00 ppm \((-\text{O}^2\text{-CH}_2) \).

The comparison of the \(\text{1H} \) NMR spectra of thio-ureas \(\text{HL}_p \), \(\text{HL}_q \) and complexes 5, 6 shows that the proton signals of NH (the thiourate group) and \(-\text{C}^2\text{H}^\text{allyl}\) by \(\Delta \delta=+1.289/+1.648,+0.301/+0.332 \text{ ppm} \) undergo the most significant downfield shifts while the multiplet of the allyl fragment \(-\text{C}^1\text{H}^2\) is significant upfield by \(-0.544/-0.824 \text{ ppm} \). The most characteristic for the \(\text{1H} \) NMR spectra of these complexes is splitting of the \(\text{C}^3\text{H}^2\) signal to the two doublets.

Cytostatic/cytotoxic screening of complex compounds 5, 6. Being the structural analogues of cisplatin the complex compounds 5, 6 were tested in the MTT-assay and possessed the cytostatic/cytotoxic activity with \(\text{IC}_{50} \) index of \(10^4-10^5 \text{ M} \) (Table) compared to cisplatin \(\text{IC}_{50}=1.3\cdot10^{-8} \text{ M} \) index for HeLa cells [27].

The highest index \(\text{IC}_{50} \) \((1.5\cdot10^{-4} \text{ M}) \) was determined for the palladium complex with \(\text{HL}^3 \) (5). Both compounds studied had the proapoptotic effect, but in contrast to the highest \(\text{IC}_{50} \) index, cytostatic and proapoptotic effects for complex compound 5 were more pronounced. For complexes 5, 6 the apoptotic indexes exceeded the control rate sevenfold and 2.5 times, respectively.

Both compounds possessed the cytostatic and antisynthetic effect. The highest inhibition of cells in both synthetic and mitotic phases \((\text{G}^2/\text{M}) \) was found for compound 5: the growth of the cell subpopulation in the \(\text{G}^2/\text{G}^1 \)-phase \((1.5 \text{ times}) \) was accompanied with reduction of the cell subpopulation in synthetic \((1.3 \text{ times}) \) and \(\text{G}^2/\text{M} \) phases \((3.3 \text{ times}) \). The effect of compounds 6 on the cell cycle phases in the concentration of \(\text{IC}_{50}/10 \) does not differ significantly from the control.

Experimental Part

The \(^1\text{H} \) NMR spectra were recorded on a Varian VXR-300 \((300 \text{ MHz}, \text{for} \ \text{HL}^1, \text{HL}^2, \text{complexes 1-4}) \) and a Bruker Advance DRX-500 spectrometer \((500.13 \text{ MHz for} \ \text{HL}^3, \text{HL}^4, \text{complexes 5, 6}) \) in DMSO-\(d_6 \) solution using TMS as an internal standard. The \(\text{PdCl}_2 \) \((\text{Pd content} \ 59 \%, \text{Merck}) \) was used as the starting metal salt. The X-ray structure data of complexes 4, 5 were collected at room temperature on a SMART APEX II diffractometer. The thio-ureas \(\text{HL}^1-\text{HL}^4 \) were prepared as described [28-32].

\[\text{[Pd(}\text{HL}^3\text{)}\text{Cl}_2\text{]} \ (1) \] The synthesis of the complex was carried out in an acidic medium \((\text{pH} 2.0-2.5) \) upon moderate \((55^\circ\text{C}) \) heating and constant stirring. Acidify the solution of \(\text{PdCl}_2 \) in ethanol with 4N HCl and add to the solution of thio-urea \(\text{HL}^1 \) in ethanol \((\text{Pd}:\text{L}=1:1) \). Reflux the reaction mixture for 10 min. While cooling filter the yellow precipitate formed, wash with diethyl ether, and dry over CaCl\(_2\) and distil the \(\text{PdCl}_2 \) \(\text{(Pd content} \ 59 \%, \text{Merck}) \) used as the starting metal salt. The X-ray structure data of complexes 4, 5 were collected at room temperature on a SMART APEX II diffractometer. The thio-ureas \(\text{HL}^1-\text{HL}^4 \) were prepared as described [28-32].
previous complex. Yield – 55%. M.p. ≥ 230°C\textsubscript{decamp}. 1H NMR δ, ppm: 4.18 brs (2H, C\textsubscript{5}H\textsubscript{2}), 5.27 dd (2H, =C\textsubscript{6}H\textsubscript{2}, J\textsubscript{cis}=15.0 and 17.4 Hz), 5.86-5.95 m (1H, =C\textsubscript{7}H\textsubscript{7}), 7.23-7.47 m (2H, 2C\textsubscript{8}H\textsubscript{2}, J\textsubscript{cis}=3.8 and 7.5 Hz), 8.05 t (1H, C\textsubscript{8}H\textsubscript{py}, J=8.1 Hz), 9.00 d (1H, C\textsubscript{9}H\textsubscript{py}, J=6.0 Hz), 9.42 brs (1H, N\textsubscript{H}), 11.87 brs (1H, N\textsubscript{3}H). Found, %: C 38.35, H 4.0, Cl 12.12, N 14.95, S 7.44. C\textsubscript{26}H\textsubscript{38}Cl\textsubscript{2}N\textsubscript{6}O\textsubscript{12}S\textsubscript{2}Pd. Calculated, %: C 38.37, H 4.0, Cl 12.12, N 14.92, S 7.43.

\textbf{[Pd(HL\textsubscript{2})\textsubscript{2}]Cl\textsubscript{2}·2H\textsubscript{2}O (3)}. Dissolve the powder of PdCl\textsubscript{2} (2 mmol, 0.194 g) in 0.5 ml of 6N HCl by heating at 60°C, then dilute to 25 mL with ethanol. Add dropwise the solution (25 mL) of thiourea (43.0 mg, 0.25 mmol) to the resulting PdCl\textsubscript{2} solution under constant stirring. Stir the reaction mixture and heat at 30-35°C for 10 min and leave for crystallization. Orange needle-shaped thin crystals are formed next day. Filter crystals and wash with ethanol and diethyl ether. Yield – 86% (75 mg). 1H NMR δ, ppm: 3.76-3.67 m (8H, 2C\textsubscript{6}H\textsubscript{2}, J\textsubscript{cis}=14.0 Hz), 4.94 d (1H, =C\textsubscript{7}H\textsubscript{py}, J=7.5 Hz), 6.17 m (1H, =C\textsubscript{9}H\textsubscript{py}, J=7.5 Hz), 9.16 s (1H, N\textsubscript{H}). Found: %: C 24.94, H 4.02, Cl 18.65, N 7.48, S 8.32. C\textsubscript{10}H\textsubscript{17}Cl\textsubscript{2}N\textsubscript{3}O\textsubscript{3}Pd. Calculated, %: C 25.18, H 4.23, Cl 18.58, N 7.34, S 8.40.

\textbf{[Pd(HL\textsubscript{4})\textsubscript{2}]Cl\textsubscript{2}·2C\textsubscript{3}H\textsubscript{6}O (4)}. Dissolve the powder of PdCl\textsubscript{2} (1 mmol, 0.097 g) in 0.1 mL of 6N HCl by heating at 60°C, then dilute with acetone to 25 mL. Add dropwise the solution (25 mL) of thiourea HL\textsubscript{2} (2 mmol, 0.223 g) in ethanol to the PdCl\textsubscript{2} solution. Stir the mixture and heat at 30-35°C for about 30 min. Isolate immediately a bright yellow precipitate. Filter the product and wash with small portions of ethanol, Et\textsubscript{2}O and dry in vacuum over Ca\textsubscript{Cl\textsubscript{2}}. Yield – 65%. M.p. – 236°C decomp. 1H NMR δ, ppm: 3.85 t (4H, 2C\textsubscript{6}H\textsubscript{2}, J\textsubscript{cis}=18.0 Hz), 4.33 d (1H, =C\textsubscript{7}H\textsubscript{py}, J=7.5 Hz), 7.42 t (1H, C\textsubscript{8}H\textsubscript{py}, J=7.7 Hz), 7.52 d (1H, C\textsubscript{9}H\textsubscript{py}, J=8.1 Hz), 8.09 t (1H, C\textsubscript{10}H\textsubscript{py}, J=7.9 Hz), 8.97 d (1H, C\textsubscript{11}H\textsubscript{py}, J=4.1 Hz), 11.42 brs (1H, N\textsubscript{H3}). Found, %: C 35.84, H 5.63, Cl 8.04, N 9.68, S 7.39. C\textsubscript{8}H\textsubscript{16}Cl\textsubscript{2}N\textsubscript{2}O\textsubscript{2}PdS. Calculated, %: C 35.97, H 4.41, Cl 8.19, N 6.93, S 7.39.

\textbf{[Pd(HL\textsubscript{3})\textsubscript{2}]Cl\textsubscript{2}·H\textsubscript{2}O (5)}. Dissolve the powder of PdCl\textsubscript{2} (1 mmol, 0.097 g) in 0.1 mL of 6N HCl by heating at 60°C, then dilute with acetone to 25 mL. Add dropwise the solution (25 mL) of thiourea HL\textsubscript{2} (2 mmol, 0.223 g) in acetone to the PdCl\textsubscript{2} solution. After that add NaClO\textsubscript{4} (0.2 g) to the mixture obtained. Stir the reaction mixture and heat at 55°C for about 30 min, and then place into a desiccator with dry diethyl ether. After a few days of standing, yellow crystals are grown. Yield – 36% (0.123 g). M.p. – 207°C\textsubscript{decamp}. 1H NMR δ, ppm: 3.77 t (4H, 2C\textsubscript{6}H\textsubscript{2}, J=4.8 Hz), 4.03 t (4H, 2C\textsubscript{7}H\textsubscript{2}, J=7.7 Hz), 7.42 t (1H, C\textsubscript{8}H\textsubscript{py}, J=7.7 Hz), 7.52 d (1H, C\textsubscript{9}H\textsubscript{py}, J=8.1 Hz), 8.09 t (1H, C\textsubscript{10}H\textsubscript{py}, J=7.9 Hz), 8.97 d (1H, C\textsubscript{11}H\textsubscript{py}, J=4.1 Hz), 11.12 brs (1H, N\textsubscript{H3}). Found, %: C 35.84, H 4.63, Cl 20.28, N 8.01, S 9.17. C\textsubscript{10}H\textsubscript{17}Cl\textsubscript{2}N\textsubscript{3}O\textsubscript{2}Pd. Calculated, %: C 35.97, H 4.41, Cl 8.19, N 6.98, S 7.39.

Conclusions

1. (N-pyridine-2-yl)thioureas react with PdCl\textsubscript{2} thereby forming the chelate-type complex compounds, in which ligands bind the metal ion via the thione group and the nitrogen atom of the pyridine ring.

2. An analogous reaction of N-allylthioureas results in formation of π-complexes involving the thione sulphur atom and the C=C double bond of the allylic moiety in coordination to palladium(II) ions.

3. The biological screening for Pd(II) π-complexes of the N-allylthiourea derivatives has exhibited in vitro their pronounced antitumor activity.

Надійшла до редакції 06.11.2015 р.